the molecules is such that neighbours make a number of close contacts as shown in Fig.2. The closest approaches of the copper atom to atoms of the neighbouring molecule are 3.59 and 3.51 Å between the copper atom at (0,0,0) and two benzene carbon atoms of the adjacent molecule, situated at (0,0,1). As a consequence, the two molecules involved have the same orientation. This situation is intermediate between the edge-to-edge contacts present in bissalicylaldiminatocopper(II) (Baker, Hall & Waters, 1966) and the axial separation from the copper atom to the aromatic ring of the next molecule of 3.21 Å found in bissalicylaldehydatocopper(II) (McKinnon, Waters & Hall, 1964), which was interpreted in terms of polarization bonds, the copper atom acting as acceptor and the π -bond system as donor.

We thank the Consiglio Nazionale delle Richerche for financial support, the Computing Centre of Padova University for providing computing facilities on the Olivetti Elea 6001 computer and Mr F. Benetollo for material assistance in data reduction.

References

- BAKER, E. N., HALL, D. & WATERS, I. N. (1966). J. Chem. Soc. A, p. 680.
- FORSYTH, G. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- FRASSON, E., PANATTONI, C. & SACCONI, L. (1962). *Ric. Sci.* 32, 649.

LINGAFELTER, E. C., SIMMONS, G. L., MOROSIN, B., SCHE-RINGER, C. & FREIBURG, C. (1961). Acta Cryst. 14, 1222.

- MCKINNON, A. J., WATERS, T. N. & HALL, D. (1964). J. Chem. Soc. p. 3290.
- SACCONI, L. & CIAMPOLINI, M. (1964). J. Chem. Soc. p. 276.
- SACCONI, L., CIAMPOLINI, M., MAGGIO, F. & CAVASINO, F. P. (1961). J. Inorg. Nucl. Chem. 19, 73.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SHKOL'NIKOVA, L. M. (1967). Zh. Strukt. Khim. 8, 89.
- Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842.

Acta Cryst. (1969). B25, 1211

Establishment of the stable geometric isomer of an a-arylidenelactone: a-(2-hydroxy-3,5-dibromobenzyli-

dene)- γ -butyrolactone^{*}. By D. F. KOENIG, C. C. CHIU, B. KREBS[†] and RODERICH WALTER, Biology Department and Medical Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A. and Physiology Department, Mount Sinai Medical and Graduate Schools of The City University of New York, New York, New York 10029, U.S.A.

(Received 12 November 1968 and in revised form 31 December 1968)

Crystals of α -(2-hydroxy-3,5-dibromobenzylidene)- γ -butyrolactone were found to be orthorhombic, with unit-cell dimensions $a=16\cdot32$, $b=10\cdot46$, $c=6\cdot81$ Å, probable space group $Pca2_1$, Z=4. The structure was determined from diffractometer data by non-centric symbolic phase addition. The tangent-refined phases differ by 11° (average) from the final phases despite strong violation of the statistical assumptions underlying the symbolic addition procedure. Full-matrix least-squares refinement yielded an agreement index R = 0.059. The largely planar molecule is in the *trans* configuration, *i.e.* the substituted phenyl moiety is *trans* to the carbonyl group of the lactone.

Introduction

Several indirect lines of evidence have suggested that α -2-hydroxy- and α -2-aminoarylidene-substituted five-membered lactones and lactams are *trans* isomers, *i.e.* the substituted phenyl moiety on carbon 7 of Fig.1 is *trans* to the carbonyl group on carbon 8, and, once *trans-cis* isomerization has taken place, the *cis* isomers undergo cyclization reactions immediately. To establish the geometry of the stable isomer, we have determined the crystal structure of a representative compound, α -(2-hydroxy-3,5-dibromoben-zylidene)- γ -butyrolactone (Fig.1).

Experimental

The compound, prepared by the procedure of Zimmer & Rothe (1959) was recovered in 86% yield after recrystallization from ethanol.

Analyses: Calculated, for $C_{11}H_8Br_2O_3$: C, 37.9; H, 2.32; Br, 45.9. Found: C, 38.1; H, 2.44; Br, 46.2.

Single crystals (m.p. 210-211 °C) elongated along c and bounded by {210} faces were obtained from benzene solution by evaporation for 10 days in darkness at 25 °C. All data were collected from a crystal $0.06 \times 0.07 \times 0.81$ mm. Dimensions of the orthorhombic cell are: a = 16.32, b =10.46 and c = 6.81 Å. Reflections with indices 0kl for odd l, and h0l for odd h are systematically absent, compatible with space groups $Pca2_1$ and Pcam. $D_m = 1.99$ g.cm⁻³ (flotation in a chloroform-bromoform mixture); $D_c = 2.00$ g.cm⁻³ for Z = 4. There are then four molecules in general positions in $Pca2_1$ or four on mirror planes in Pcam. Since fivemembered lactone rings are non-planar (Fridrichsons & Mathieson, 1962; Jeffrey & Kim, 1966), $Pca2_1$ was chosen as the probable space group (see Discussion).

Integrated intensities of 473 reflections with $d_{\min} = 1.1$ Å were collected by ω scan by means of a counter diffractometer with Cu $K\alpha$ radiation. Since the extreme variation in absorption correction of intensities is 9% for the data collected (although $\mu \simeq 98$ cm⁻¹ for the crystal) no correction was applied. The absolute scale and overall B(2.10 Å²) were estimated from a Wilson plot.

^{*} Research sponsored by the U.S. Atomic Energy Commission, NIH Grant AM-10080 and The Mount Sinai School of Medicine, New York.

[†] Present address: Anorg. Chemisches Institut, Universität Göttingen, West Germany.

Structure determination

Attempts to interpret the Patterson function were unsuccessful. The roughly planar molecules lie normal to c (see Discussion) so that all peaks fall at w=0 or $\frac{1}{2}$ and the two bromine atoms in each molecule are about $\frac{1}{4}$ apart in both their x and y coordinates. The two bromine atoms, which do 80% of the scattering, could not be located.

The structure was then solved by the symbolic addition method (Karle & Karle, 1964, 1966). Four starting symbols, for 1031, 920, 121 and 431, generated 32 symbolic phases to E=2.0. Starting phase assignments of 45, 0, 135 and -90 degrees, respectively, fixed the origin and hand. Ten cycles of simultaneous phase extension and tangent refinement led to stable phases for all the 269 independent reflections of E > 0.60. The assigned phases refined to values of 87.0, 0.1, 87.1, and -92.4 degrees respectively. Although the distribution of E values differs strikingly from that expected for a random (centrosymmetric or noncentrosymmetric) electron density distribution, the refined phases differ from those of the final least-squares cycle by only 10.30° (average) or 32.0° (root mean square). If the 11 reflections (E < 1.2) with discrepancies greater than 45° are excluded, the values fall to 4.5° and 7.2° .

The E map displayed a plausible structure, but the two bromine atoms alone (moved to give one a fixed z coordinate of zero) were used to begin a series of three F_o-F_c syntheses which yielded all 16 non-hydrogen atoms. Two

> 346 76 167 339 66 181

Table 1. Structure amplitudes

h	Fo ",0,0	Fcl	h	F ₀ H,7,6	F _c	ħ	F ₀ #, 4, 1	F _c	h	F ₀ #,2,2	F _c	h	Fo H, Ø, 3	Fc	h	F ₀ H, 1, 4	F _c
7 6 8 18 12 14	427 1866 246 638 651 276 882 H, 1, 6	386 1821 236 548 636 271 897	8 1 2 3 4 5 6 7 8	851 883 118 59 278 588 162 86 166	453 458 187 17 258 564 144 54 164	1734567891	1815 64 491 152 523 446 713 381 713 375 739	1836 528 1987 425 676 377	812345578	457 98 119 643 414 1119 130 127 167	496 169 137 693 436 1143 138 116 182	2 6 8 10 12	166 1001 986 1190 657 67 H, 1, 3	155 944 859 1143 622 73	8123656791	588 169 183 152 333 688 59 52 593	47# 196 2#8 152 341 56# 58 58
123	7#1 538 791 37	765 536 775 39	16	152 H,R,M	142	11 12 13	317 364 395	316 299 419	1# 11 12 13	237 316 149 246	248 345 112 244	2345	58 633 363	139 473 625 304	10	186 H, 2, 4 294	282
N 5678	76% 1152 %7 128	714 1102 47 126 89	1 2 3 4	354 341 117 56 255	396 355 100 61 242	1 2 3	979 575 571	949 549 533		H, 3, 2	1233	5 7 8 9 14	247 315 239 237	421 263 332 236 223	1 2 3 6 5	43 62 376 248 568	33 75 382 24fl 637
9 11 12 13	1189 238 311 168	1149 214 316 113 460	5 6 7 8	528 381 177 248	533 288 177 291	4 5 7 8	57 182 168 80 327	59 175 87 78 319	56	243 796 58	178 278 848 62 184	11	118 24 14,2,3	116	6 7 8 9	56 79 88 679	64 67 96 637
6	H, 2, A 634	656	8 1 2	H, 9, 4 229 265	394 238 286	9 14 11 12	388 244 16 239	375 215 21 176	7 8 9 10 11	83 154 185 482 76	83 174 148 515 52	1 2 3 4 5	995 189 298 272 664	1834 269 326 283 685	# 1 7	H, 3, 4 790 98 266	759 165 275
23456	159 886 549 1345 215	148 982 544 1422 183	3 4 5	142 285 235 H, M, 1	118 286 227	1 2 3	1,6,1 316 136 31	319 126 33	12	424 98 H, 4, 2	89	6 7 8 9 10	299 106 225 387 75	311 112 213 301 77	34567	213 527 61 87 51	198 511 75 110 56
7 8 9 16	161 254 1245 299 384	145 234 1266 294 398	6 8 10	1488 1384 1765 847	1348 1271 1676 825	6 7 8	718 349 621 293 687	639 332 552 298 661	1 2 3	884 372 248 38 742	931 433 262 36 774	11	254 H, 3, 3	221	8	168 64 H,6,6	158 71
12 13 14	125 276 147 H, 3, 6	123 297 177	12	141 239 H,1,1	167	11	197 568 196 P,7,1	176 521 185	567 R 9	660 278 184 233 599	712 292 95 248 659	123	251 32 57 955 29	281 89 81 937 83	1 2 3	552 228 286 31 455	528 238 179 28 462
1 2 3	1299 154 624 312	1461 178 641 334	1 23 4 5	#16 194 #3# 1#13 39#	848 233 772 941 393	1 2 3 4	301 39 500 461	316 54 476 429	10 11 12	181 81 62 1,5,2	197 27 74	5 7 8 9 14	548 287 614 168 674	546 288 577 154 671	5 6 7 8	455 198 41 172	445 187 48 183
5 57 8	1821 75 78 123 282	1884 45 86 189	6 7 8 9	697 482 379 354 293	673 36# 42# 345 299	5 7 8 9	269 422 196 135	116 262 613 182 132	1 2	272 73 329	298 91 346	11	134 1,4,3 681	138	1	H, 5, 6	155 67 219
9 1# 11 12	118 659 49 556	116 624 47 549 93	11 12 13	186 57 785 91	192 31 725 76	1 2	1,8,1 731 605	676 414	1567#	136 824 144 83 60	159 883 183 76 73	2 3 5 5	63 312 196 329 348	76 352 217 363 338	3 4 5 6	316 97 531 110	292 89 532 115
14	734 11,4,6	796	12	H, 2, 1 1686 296 557	1594 296 548	3 N 5 6 7	356 85 359 14 156	354 50 352 9 117	9 18 11	673 148 52	734 161 67	7 8 9 1#	187 473 198 581	213 464 217 552	8 1 2	H, 5, 4 679 75 73	658 55 71
123 45	547 313 94 1435 846	541 296 47 981 843	45.678	441 959 482 27 277	452 937 494 58 278	12	P,9,1 79 171	76 147	1 7 3	1047 89 41 344	1461 77 64 359	1 2 3	H, 5, 3 687 349 358	675 375 372	3	236 337 H, 8, 5	217
6 7 8 9 18	341 131 288 767 228	351 125 262 779 228	14 11 12 13	385 98 53 315 613	385 78 52 321 656	3	282 I', 6, 2	252	45 67 #	589 93 29 66 44	549 121 36 68 53	45578	34 134 56 86 213	167 60 79 220	2 4 6	42 561 414 P,1,5	47 545 451
11 12 13	39 68 337 P, 5, 6	34 8# 373	14	66 H,3,1 437	56	6 8 10	839 193 469 490	835 224 474 524	16	238 .177 H,7,2	268	1	274 1', 6, 3 276	252	1 23	311 17 199 298	329 217 318
1 2 3	423 181 452 517	3#2 96 415 476	2 3 456	157 1366 137	165 1770 741	, ,	1,1,2 672	667	1 2 3 4	359 142 27 225	389 111 20 222	23456	83 483 236 389	55 229 386	57	184 214 165 H,2,5	183 206 171
15678	178 1689 191 121 88	193 1056 216 113 76	8 9 14 11	887 213 931 139	789 226 916 138	23 4 5 6	491 87 579 946	513 95 592 922	5 7 8	135 55 141	147 147 59 143	ź.	45 668 H,7,3	575	123	515 69 128 168	551 96 147 146
9 18 11 12	868 191 66 69	855 186 66 49	12	111 48 127	28 113	3 9 18	88 145 945 145	113 93 957 162	1	299 288 91	342 361 79	2345	178 346 367 88	97 336 325 87	5	343 155 H,3,5	301
8 1 2	H,6,4 1266 93 33	1259 90 26				12 13	223	273	, 4 5 6	196 864 246	215 467 244	2	H, 8, 4 189 496 160	131 505	1 2 3 4 5	121 50 49 452 52	138 68 35 484 22
3	439 698	676										16	299	368		11,4,5	

598 118 54 89 51 281 287 255 13# 16 81 37 292 223 265 least-squares cycles, with anisotropic bromine temperature factors, lowered the value of R from 0.158 to 0.070. Atomic scattering factors were taken from Cromer & Waber (1964) except those for H (*International Tables for X-ray Crystallography*, 1962). Inclusion of eight hydrogen atoms and full anomalous dispersion corrections for bromine (Cromer, 1965) lowered the value of R to 0.059 (0.064 weighted). The hand was chosen on the basis of smallest r.m.s. structure factor error. Observed and calculated structure factors are given in Table 1.

Fig. 1. α -Arylidene-substituted five-membered lactones and lactams: (1–4) α -benzylidene- γ -butyrolactones (Zimmer, Haupter, Rothe, Schrof & Walter, 1963; Zimmer & Walter, 1963*a,b*); (5) α -benzylidene-2-pyrrolidinone (Zimmer, Armbruster & Trauth, 1965); (6) α -benzylidene-5-oxazolone (Walter, Purcell & Zimmer, 1966); (7) α -benzylidene-2(3*H*)coumaranone (Walter, Zimmer & Purcell, 1966); (8) α benzylidene- $\Delta\beta$, γ -angelicalactone (Walter & Purcell, 1966); (9) α -benzylidene- $\Delta\beta$, γ -butenolide (Walter, Theodoropoulos & Purcell, 1967).

Fig. 2. Structure of α -(2-hydroxy-3,5-dibromobenzylidene)y-butyrolactone. Bond distances in Å. Least-squares e.s.d.'s are 0.02 Å for Br-C bonds and 0.03 Å for the others.

Discussion

Final atomic parameters are given in Table 2, bond lengths in Fig.2, and bond angles in Table 3. Common experience, and inspection of equivalent bond lengths in this structure, indicate that the overall standard deviations are about twice the least-squares estimated standard deviations. Because of the preponderant contribution of the two bromine atoms to the total scattering, highly accurate atomic parameters were neither easily attainable nor sought.

Table 2. Atomic parameters

Components of the anisotropic temperature factors for the bromine atoms, defined by

$$\exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right],\$$

are listed with least-squares estimated standard deviations in parentheses on the scale of the last digit. $\sigma(x) = 0.0001$, $\sigma(y) = 0.0002$ and $\sigma(z) = 0.0017$ for Br; $\sigma(x) = 0.001$, $\sigma(y) = 0.002$, and $\sigma(z) = 0.010$ for light atoms.

	x	У	Z	В
Br(1)	0.0750	0.1464	0.0000	0.0016 (1)
				0.0127(3)
				0.0255 (9)
				0.0005 (1)
				0.0006 (9)
				-0.0004(14)
Br(2)	0.3556	-0.1668	-0.0001	0.0027 (1)
				0.0074 (3)
				0.0352 (10)
				0.0007 (1)
				-0.0004 (10)
				-0.0037(13)
C(1)	0.192	0.130	0.002	2.87
C(2)	0.224	0.008	0.009	3.45
C(3)	0.311	0.000	-0.005	2.92
C(4)	0.356	0.101	0.008	2.32
C(5)	0.325	0.228	0.012	2.63
C(6)	0.237	0.240	0.011	3.57
C(7)	0.372	0.344	-0.016	2.97
C(8)	0.453	0.361	0.014	3.05
C(9)	0.526	0.2/1	0.024	2.91
C(10)	0.596	0.363	-0.030	3.34
$C(\Pi)$	0.485	0.489	0.027	4.08
O(1)	0.266	0.493	-0.008	3.28
O(2)	0.449	0.263	0.041	4.02
O(3)	0.207	0.328	0.030	3.29

Table 3. Bond angles

Least-squares $\sigma \leq 2^{\circ}$ for all bond angles.

	Angle
C(1) - C(2) - C(3)	116°
C(2) - C(3) - C(4)	121
C(3) - C(4) - C(5)	124
C(4) - C(5) - C(6)	116
C(5) - C(6) - C(1)	118
C(6) - C(1) - C(2)	125
Br(1) - C(1) - C(2)	118
Br(1) - C(1) - C(6)	117
Br(2) - C(3) - C(2)	116
Br(2) - C(3) - C(4)	123
C(4) - C(5) - C(7)	125
C(6) - C(5) - C(7)	117
C(5) - C(6) - O(3)	116
O(3) - C(6) - C(1)	126
C(5) - C(7) - C(8)	128
C(7) - C(8) - C(9)	134

	Angle
C(7) - C(8) - C(11)	119
C(11) - C(8) - C(9)	107
C(8) - C(9) - C(10)	101
C(9) - C(10) - O(1)	108
C(10)-O(1)C(11)	109
O(1) - C(11) - C(8)	112
O(1) - C(11) - O(2)	117
O(2) - C(11) - C(8)	131

The carbonyl group of the lactone ring is *trans* to the substituted phenyl group on C(7) of the exocyclic double bond (Fig. 2). The phenyl group is planar. In agreement with earlier reports (Mathieson & Taylor, 1961; Fridrichsons & Mathieson, 1962; Jeffrey & Kim, 1966) the C-C-O-C

ő

group of the lactone is planar; the carbon atom C(9) of the lactone is 0.3 Å (~6 e.s.d.) above this plane. Leastsquares refinement of the structure in space group *Pcam* (the 4 molecules on mirror planes) led to values for *R* of 0.066 (unweighted) and 0.069 (weighted), comparable with those from the *Pca2*₁ refinement. However, temperature factors for atoms C(9), C(10), C(11), O(1), O(2) and O(3) rose by an average of more than 1.0 Å², so that although a disordered structure containing molecules of each hand cannot be ruled out, the ordered *Pca2*₁ structure seems more probable. In any event, all bond lengths agree within one e.s.d. between the two refined structures, including the unreasonable C(3)-C(4) length of 1.29 Å.

The ester oxygen O(1) of one molecule is hydrogenbonded to the phenolic oxygen O(3') of the molecule related to the first one by the *a*-glide plane normal to **b**. The O(1)– O(3') distance is 2.79 Å (e.s.d. 0.02 Å) and the angle of O(1)–O(3')–C(6') is about 144°. The hydrogen-bonded molecules form zigzag chains running along the **a** axis. Perpendicular to **c** and at c/2 apart, alternate sheets of parallel chains running in opposite directions are stacked with maximum overlapping of the phenolic rings.

The crystal structure confirms the hypothesis that the initial step in the formation of a coumarin from an α -(2-

hydroxybenzylidene)- γ -butyrolactone consists of a *trans,cis* isomerization (Zimmer, Haupter, Rothe, Schrof & Walter, 1963), and lends support to the chemical evidence that all α -arylidene-substituted five-membered lactones and lactams in Fig. 1 are *trans* isomers.

The authors thank Dr G.A. Mair for active interest in this work.

References

- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1964). Los Alamos Scientific Laboratory Report, LA-3056.
- FRIDRICHSONS, J. & MATHIESON, A. MCL. (1962). Acta Cryst. 15, 119.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JEFFREY, G. A. & KIM, S. H. (1966). Chem. Comm. p. 211.
- KARLE, J. & KARLE, I. L. (1964). Acta Cryst. 17, 835.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- MATHIESON, A. MCL. & TAYLOR, J. C. (1961). Tetrahedron Letters, 590.
- WALTER, R. & PURCELL, T. C. (1966). Chem. Industr. p. 2057.
- WALTER, R., PURCELL, T. C. & ZIMMER, H. (1966). J. Heterocycl. Chem. 3, 235.
- WALTER, R., THEODOROPOULOS, D. & PURCELL, T. C. (1967). J. Org. Chem. 32, 1649.
- WALTER, R. & ZIMMER, H. (1964). J. Heterocycl. Chem. 1, 217.
- Walter, R., ZIMMER, H. & PURCELL, T. C. (1966). J. Org. Chem. 31, 3854.
- ZIMMER, H., ARMBRUSTER, D. C. & TRAUTH, L. J. (1965). J. Heterocycl. Chem. 2, 171.
- ZIMMER, H., HAUPTER, F., ROTHE, J., SCHROF, W. E. & WALTER, R. (1963). Z. Naturforschg. 18b, 165.
- ZIMMER, H. & ROTHE, J. (1959). J. Org. Chem. 24, 28.
- ZIMMER, H. & WALTER, R. (1963a). Naturwissenschaften 50, 331.
- ZIMMER, H. & WALTER, R. (1963b). Z. Naturforschg. 18b, 669.

Acta Cryst. (1969). B25, 1214

The absolute structure of LiIO₃ crystals. By I. D. CAMPBELL and A. McL. MATHIESON, Division of Chemical Physics, CSIRO Chemical Research Laboratories, P.O. Box 160, Clayton, Victoria, Australia 3168 and M. F. MACKAY, Chemistry Department, Melbourne University, Parkville, Victoria, Australia 3052

(Received 16 November 1968)

Rosenweig & Morosin (Acta Cryst. (1966) 20, 758) concluded that the non-centrosymmetric structure of individual crystals of LiIO₃ could not be placed on an absolute basis by use of the anomalous dispersion of the iodine atoms because these particular atoms are related by a point of inversion. This conclusion is erroneous and its implication of such a restriction on the determination of absolute structure is misleading. Numerical evidence that the absolute chirality of individual LiIO₃ crystals is capable of experimental confirmation is presented.

Recent re-investigation of the crystal structure of LiIO₃ (Rosenweig & Morosin, 1966; Boer, Bolhuis, Olthof-Hazekamp & Vos, 1966), referred to subsequently as RM and BBOV respectively, has unambiguously established its space group as $P6_3$. This space group is non-centrosymmetric, the structure consisting of discrete trigonal iodate groups and Li ions surrounded by six oxygen atoms in a distorted octahedral arrangement. The iodine atoms lie on trigonal